原标题:学科交叉“撞”出基础数学的“春天”——记自然科学基金创新研究群体项目“代数与数论”
近半个世纪以来,纯粹数学的发展呈现出各分支学科之间相互交叉与融合渗透的趋势和特点,在代数几何、数论、表示论、数理逻辑等这些十分活跃的领域里,让原本在不同领域里“各自为战”的数学家们意识到他们有着共同目标,并开始重新联合在一起。
不同方向的数学家们思想与灵感的碰撞,正在催生重大的研究突破和进展。
打造平台 凝聚数学家
纯粹数学自发展为一门独立的学科以来,它的研究和发展既拓展了自身的发展空间,也正成为其他领域关键问题得以解决必不可少的工具、方法和理论。
“学科交叉,是历史自然发展的阶段,如今到了需要多个方向知识汇合的时期。”中国科学院院士、中国科学院数学与系统科学研究院院长席南华告诉《中国科学报》,世界本来是综合的,人们只是为了研究世界才把它割裂开。然而,就像“盲人摸象”一样,只研究其中一个方面,并不能反映整体性质,数学的各个分支也是一样。
过去几十年,李理论、代数几何、数论、泛函分析和数理逻辑等领域的交叉对其自身以及其他领域的发展起了巨大的推动作用。
作为一切科学的基础,数学将在未来持续充满生命力,诸多发达国家把保持数学领先地位和可持续性发展作为自己的战略需求,而我国,也需抓住交叉融汇这一新契机,加速从数学大国向数学强国转变的步伐。
中国科学院数学与系统科学研究院(以下简称数学与系统科学研究院)作为专业数学研究机构,在代数与数论这一纯粹数学领域积累了诸多杰出的研究基础和人才队伍。
“我们一直是非常有雄心的。多年以来,我们始终重点关注着数学的主流方向。”席南华说,大家有共同的兴趣,同时还需要一个平台。
从2014年开始,在连续2期的国家自然科学基金创新群体项目‘代数与数论’的支持下,由席南华牵头,有效地将代数和表示论、数论、数理逻辑及其相关应用等方向的数学家组织起来,促进合作交流,以期通过共同努力,做出具有开创性和引领性的世界一流成果,培养一批优秀年轻人,形成自己的研究特色。
灵感碰撞 成果涌现
6年来,围绕国际若干前沿领域的重大问题,项目团队成员取得了诸多优秀的成果。
朗兰兹纲领(Langlands program)是21世纪最重大的数学问题之一,也是当今基础数学中非常活跃的研究方向。
它源于1967年,加拿大数学家罗伯特·朗兰兹给法国数学家安德烈·韦伊的一份信。信中,罗伯特·朗兰兹阐述了一项革命性的理论:即将数论、代数几何与群表示理论这三个独立发展、看似毫不相干的数学分支建立起了深刻联系。
如今,与它有关的每一项新进展几乎都被看作是重要成果。其中L-函数被称为朗兰兹刚领的中心问题,因为它是联系着三大数学分支的桥梁,数学界著名的七个“千禧年大奖问题”——黎曼假设和BSD猜想都与它有关。
研究朗兰兹纲领,需要一支兼具数论、代数群、李群表示论和代数几何专长的研究团队。近年来,数学与系统科学研究院就发展了这样一支享誉全球的年轻队伍。
项目组成员孙斌勇研究员证明了高阶Rankin-Selberg L-函数特殊值非零假设,这一成果被称为“孙的突破”。后来,他在自己博士论文及前人工作的基础上,对L-函数的算术性质的研究中引入了构造上同调表示局部周期的分析方法,这一代数构造被国际同行称为“孙的上同调导出泛函”。 利用这个代数构造,最终证明了关于线性周期的非零假设。
这是孙斌勇“十年磨一剑”的成果,期间他也常常遇到思考卡顿、想不通的时候,除了思考钻研,还与其他数学家交流探讨,他前往美国受邀拜访以朗兰兹纲领见长的数学家江迪华教授、与新加坡数学会会长、新加坡国立大学教授朱程波交流合作。在他看来,数学是一项长期工程,做数学要慢一点,把每一步都走得非常扎实,一点一点进步,才会走得更远。
在BSD猜想研究方向也取得了突破,万昕研究员证明了更一般的非正规情形下秩为0与1时的BSD公式,从而完成了秩为0与1的BSD猜想的证明。法国CNRS教授Christophe Cornut对此工作的评价为“积数十年来发展的几乎所有方法集大成的皇冠性成果。”
2015年,田野研究员曾第一次对BSD猜想给出了接近最终答案的线索,当时被国际同行评价为“中国继陈景润之后最好的工作”。最近,他与合作者将此前BSD 猜想关于有理数域上带复乘椭圆曲线的反定理推广到了全实域上带复乘的椭圆曲线。
此外,研究人员在代数簇中向量丛的研究和极小有理切线簇的研究、算子代数和Riemann zeta 函数的零点分布、Von Neumann 代数的生成元问题和自由群因子的同构问题等方向上也做出了重要成果。
突破和进展得益于研究人员内部以及与国内外广泛而深入的学术联系,这数学家们有了更多灵感闪现的瞬间。
“这是一种智力活动、思想碰撞,而这种相互影响(产生的结果)往往比较隐秘,但十分重要。”席南华说。
培养人才 造就一流
当今和未来世界的竞争,根本上还是人才的竞争。在数学领域,亦是如此。
“我国还比较缺乏顶尖的、有影响力的数学家,我们一直朝这个方向努力,尽管可能成效比较慢。”席南华说。在数学院,他们通过各种途径努力培养和造就一些具有竞争菲尔兹奖等国际数学大奖实力的青年数学家。
通过项目的支持,大力鼓励研究人员通过出访、邀请、组织或参与国际会议和年度群体活动进行合作交流,开阔视野、扩大眼界。没有时间和地点的限制,只要“有需要”就组织。
在科研人员看来,这种“近朱者赤”的潜移默化过程让他们受益匪浅,当与世界顶尖的数学家交流多了,了解他们在关心的问题,学习他们看待和思考问题的方式,有利于自己的成长。
数学被称为“年轻人的事业”,团队还非常重视学生的培养,按照培养一流人才的标准设置相关专业的课程并授课,课程包括代数学 I-IV、代数数论、代数几何、李代数及其表示、线性代数群及其表示、Shimura簇等。安排学生参加各类高水平学术交流活动等。
纯粹数学大多研究千百年来的“未解之谜”,是长期工程。因此,科研人员必须心无旁骛、持续专注,才能有所成就。
席南华表示,他们更重在营造浓厚的学术氛围。“就好像植物,必须有好的环境才能茁壮成长。人也一样,即使是天才也需要合适的环境,我希望我们的科研人员每天高高兴兴、心情愉悦,让身体的潜能得到充分激发。”
为此,他们一方面在制度上营造宽松的环境,给予科研人员充分的自主权,减少考核;另一方面,在行政系统上树立“服务”的概念,尽可能少打扰科研人员,不让他们为各种繁琐的事情分心。
此外,在团队中倡导学术平等,没有“权威”的意识。“年轻人在这里不会感到压抑,也不需要在资历深的专家面前小心翼翼,事实上,大家可以很随意的开玩笑。放松,无拘无束,就没有任何东西可以限制人的发展空间了。”席南华说。
诸多举措使得人才培养显见成效,在项目实施期间,团队中有1人当选为中国科学院院士,1人获得国家自然科学奖二等奖, 3人获得优秀青年基金资助,有1人从副研究员晋升为研究员,有2人从助理研究员晋升为副研究员。
研究周期长、成功率低、论文难发表是纯粹数学研究的一大特点。而在现有“以文章论英雄”的评价机制下,数学家们难免受到“非议”。
“内心有标杆,自我有标准,不闻窗外扰动之声”,这是创新研究群体团队成员保持“定力”的做法。
“阿基米德、牛顿、高斯、欧拉......这些伟大的科学家足以当我们的指路明灯,只要坚定信念、明确方向,其他事与我无关。”席南华以此要求自己,同时也倡导年轻人如此,“数学与系统科学研究院、数学研究者还是要保持一颗单纯的心,当今世界纷繁嘈杂,但我们的数学心如初。”
学术带头人专访
“数论正处于一个特别活跃的发展期”
《中国科学报》:在代数和数论领域,国际前沿关注哪些方向?
席南华:Langlands纲领,BSD猜想,Hodge猜测,黎曼假设,算术代数几何,Lie理论,量子群和代数群表示论,双有理几何与模空间等都是代数与数论领域国际关注的前沿且活跃的问题和研究方向。
基础数学的分支繁多,追求数学的统一性,各分支之间的相互渗透导致重大难题猜想的解决,是近年来基础数学发展的一个大趋势。
《中国科学报》:我国在代数和数论领域的优势方向和团队有哪些?
席南华:数论正处于一个特别活跃的发展期,重大成果不断涌现,其中黎曼假设与BSD猜想两个千禧问题尚未解决。
朗兰兹纲领是21世纪最重大的数学难题之一,其研究涉及数论、代数群与李群、代数几何、分析等诸多数学方向,已产生5个菲尔兹奖,但中心问题还远未解决。中科院数学院朗兰兹纲领研究团队有成员13人,其中中科院院士2人,国家杰出青年科学基金项目获得者5人。团队成员近年来解决了该方向多个重要猜想。
《中国科学报》:数学与系统科学研究院在建设数学强国的过程中发挥着怎样的作用?
席南华:国家给予了数学院很好的条件,包括把数学院作为体制改革的试点。我们集中精力出成果、出人才、出文化、出思想。少干扰,尽可能让大家安心做研究、做大的问题。
近30年来,我国数学科学发展迅速,学科布局有了很大改善,研究水平也有惊人进步,在数学多个领域已形成若干有相当实力的科研团队,取得了一批具有重要国际影响的研究成果,在国际上占有一席之地。但从总体上看,我国的数学研究水平离国际一流水平还有差距。
我时常告诉我们的科研人员,在数学与系统科学研究院的工作不仅仅是一份养家糊口的工作,更是一份事业,是让人自豪的事业,关系到我国数学与系统科学发展。同时,我们也积极向国家和中国科学院争取项目,从而稳定支持一批高水平中青年科研人员在这里潜心研究,取得重大突破或进展,开辟在国际上有重大影响的数学新方向。
纯粹数学
学科交叉
发现网登载此文出于传递更多信息之目的,并不意味赞同其观点或证实其描述。文章内容仅供参考,不构成投资建议。投资者据此操作,风险自担。违法、不良信息举报和纠错请联系本网。
地址:北京市朝阳区团结湖北街2号11幢206
邮编:100020
京ICP备05049267号
京ICP备05049267号-1
京公网安备11010102001063
版权所有 发现杂志社