转录是将遗传信息由DNA复制到RNA的过程,是蛋白质生物合成的第一步,相当于对DNA进行“解码”和“翻译”的起始。转录因子是调控生物体转录过程的重要物质。近期,复旦大学人类表型组研究院丁琛团队历时十余年研究,在世界范围内首次实现了大规模甲基化转录因子阅读器的鉴定及功能研究,相关成果于北京时间8月6日在线发表于权威国际学术期刊Advanced Science(高等科学)上。
据悉,转录因子 (TF) 在几乎所有生物过程(包括分化、发育、细胞周期控制和细胞凋亡)和基因表达模式中都发挥着关键作用。根据科学家的研究,人类基因组中约有 1500 个转录因子编码基因。转录因子可特异性识别下游靶基因,并随后一起构建出转录(TF)或转录共调节子 (TC)与DNA的复合体,从而在调控各种生物过程的激活或者抑制中发挥重要作用。然而,转录因子在细胞内的表达丰度极低,使得对转录因子极其形成的复合物的纯化及鉴定非常困难。
尽管 DNA 甲基化在各种生物过程和物种中都有过研究报道,但是对这些数据集的解释往往不能提供对DNA甲基化水平动态变化的机制性理解。建立DNA甲基化和表观遗传领域的生理结果之间的因果关系是生命科学前沿领域的一个重要挑战。从以有的研究结果来看,要理解DNA甲基化机制的第一步,就要识别出将甲基化信号转化为生物行为的DNA甲基化“阅读器(Reader)”和“写入器(Writer)”,即要确定与DNA甲基化动力学相关的蛋白质和DNA之间的相互作用,这对于破译通过甲基化方式开展的各类生物过程中的遗传“密码”至关重要。但是,因为转录因子在生物体内先天丰度的不足,迄今为止对于转录因子阅读器的大规模研究仍然无能为力。
复旦大学人类表型组研究院丁琛团队,聚焦转录因子研究十余年,此次在世界范围内首次实现了大规模甲基化转录因子阅读器的鉴定及功能研究。这一最新成果取得的基础,是由丁琛团队自主开发并于2013年首次发布的一项原创关键技术——转录因子串联结合元件序列(catTFRE)。该技术利用转录因子与序列特异性DNA元件结合的特点,首次设计合成了串联各种转录因子的多拷贝双链DNA结合元件,并通过与预先制备好的核蛋白一起孵育,从而从核蛋白中分离纯化具有DNA结合活性的内源转录因子及其复合物。可以说,catTFRE是研究转录调控领域的一项关键核心技术,对开展生物医学前沿领域的创新研究具有重大价值。
然而,catTFRE这一技术是否可能拓展到表观遗传修饰的研究中,以及是否可以通过改良该技术进行大规模的表观遗传修饰转录因子阅读器的大规模筛选,仍然未知。经过不懈探索和努力,丁琛研究团队最终成功利用改良的modi-catTFRE技术进行了大规模的内源性甲基化、羟甲基化、甲酰基化转录因子阅读器的鉴定及功能研究,在表观遗传学领域取得了重要科研进展。
在本次研究中,科研人员首先通过PCR扩增技术,以catTFRE为模版,以不同修饰的胞嘧啶碱基为原料分别获得了,5甲基胞嘧啶-TFRE序列(5mC-TFRE),5羟甲基胞嘧啶-TFRE序列(5hmC-TFRE),和5甲酰基胞嘧啶-TFRE序列(5fC-TFRE),研究使用了四种肿瘤细胞系和小鼠脑发育的五个时间点的核蛋白提取物,使用无标记定量质谱技术,共覆盖到了约70%的转录因子,提供了全景式蛋白质组学下的转录因子和被修饰DNA的结合模式。该研究同时还鉴定到了多种特定修饰结合的转录共调解因子以及DNA结合蛋白等,并对5C,5mC,5hmC,5fC-modified特异偏好结合转录因子阅读器进行了功能富集分析,结果显示无修饰5胞嘧啶DNA序列(5C-modified DAN)结合转录因子主要执行常规功能;5羟甲基胞嘧啶DNA序列和5甲酰基胞嘧啶DNA序列(5hmC&5fC-modified DNA)结合转录因子主要参与发育,分化等功能。
同时,该研究还全面解析了24个转录因子家族和35个转录因子结构域与甲基化修饰DNA结合的偏好性,其中,SCAN 结构域显著偏好结合5甲酰基胞嘧啶DNA序列(5fC-modified DNA),模拟蛋白结构解析同样证明了这一结论,进一步证明了表观遗传驱动的特征生物学过程。
作者还对小鼠大脑发育过程中转录因子特异甲基化修饰DNA结合模式的动力学进行了实证研究,揭示了鼠脑发育过程的全景式转录因子-被修饰DNA结合模式,阐明了不同转录因子修饰的 DNA 复合物在控制不同基因表达中的作用。转录因子-被修饰DNA相互作用组在不同发育阶段具有不同的结合偏好性,这进一步证明了大脑发育过程中动态表观遗传调控所起到的的关键作用。
据悉,丁琛团队发表的本次最新研究提供了最全面的转录因子-被修饰DNA相互作用组,涵盖了70%的转录因子。这些数据集将使该领域的其他研究人员能够深入挖掘不同层次的表观遗传调控机制。同时该数据集将增强对DNA甲基化修饰驱动的表观遗传学在与发育和疾病相关的关键生物过程中触发的分子机制的理解。(采访对象供图)
陶韡烁 科技日报记者 王春
DNA表观
遗传修饰
转录因子
发现网登载此文出于传递更多信息之目的,并不意味赞同其观点或证实其描述。文章内容仅供参考,不构成投资建议。投资者据此操作,风险自担。违法、不良信息举报和纠错,及文章配图版权问题均请联系本网,我们将核实后即时删除。